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Classification

Prediction of examples to a discrete set of
possibilities

h . features — class label
e Written digit recognition

e Automated medical
diagnosis

e (Credit approval
e (Collaborative filtering

e Remote sensing



SelectionoftZ: X—> Y

Good choice for 4 minimizes
misclassification rate...

P(h(X) = ¥)

where (X,Y) come from their
natural distribution.



Common 2’s

Decision trees - CART,
C4.5

Naive Bayes classifier
Discriminant analysis
Logistic regression

Neural network



Naive Bayes classification

Bayes’ Theorem
PX|Y =y)P(Y = y)

P(Y=y|X)= POX)

P(Y=1|X) o<
P(Y=1)P(Xi|Y=1)...P(X4Y=1)

P(Y=0|X) oc
P(Y=0)P(X1|Y=0) ...P(X4 Y=0)



Estimation
Probability estimates are

trivial when all the Y’s are
observed.

N['xij:1|yi:1]

P(X,=1|Y=1)= Dy 1]

Bayesian estimation adds a constant
to the numerator and denominator.



Comments on Naive Bayes

Estimation 1s linear in the
number of predictors and the
number of observations.

Naive Bayes 1s robust to
violations of the conditional
independence assumption.

Naive Bayes 1s robust to
irrelevant predictors.

Naive Bayes models are easy
to interpret.



Weight of evidence

P(Y =1| X)
P(Y=0|X)

log

P(Y = 1)f[ P(X,|Y =1)

= log y
P(Y = O)H P(X,|Y =0)

0g L= § P(X,|Y=1)

~ S P =0) Z P(XJ.|Y=0)

=w, + Z w (X))
j=1

Positive wi(X)) 1s evidence 1n
favor of Y=1.

A negative weight 1s
evidence for Y=0.



Evidence in favor of knee Evidence against knee

surgery surgery

Female +8  Prior evidence -10

Knee 1s unstable +88 Age 50 -12

Knee locks +172 No effusion -62

Tender med JL +49  Negative -38
McMurray’s

Total positive +317 Total negative -122

evidence evidence

Total evidence +195

Probability of knee 88%

surgery

Example evidence balance sheet



Boosting algorithms

1.

2.
3.

Initially weight all
observations equally

Fit a model to the data
Upweight observations
poorly modeled...
downweight well modeled
observations

. Refit the model accounting

for the new weighting

. After T 1terations each

model “votes” on a final
prediction with strength
proportional to quality



Boosting classification
Model — A(x) = P(Y=y|X=x)

Fit = Estimate the parameters
of P(Y=y|X=x)

Quality =
TP =y | X=1x)



AdaBoost algorithm
(Freund & Shapire, 1997)

Fit model A(x;) : X—[0,1].

N
g =>w
I

=1
ﬂ — gt (t+1) (r)ﬂl | vi—H, (x;)|
o l-¢g
1
n(x)=——-7~
1+H,Bt2r(X)_l
) t=1
> (log } )k, (x)
r(x) ==

Z(log )



Comments on AdaBoost
1. F&S prove that on the
training dataset

< 2T‘lll[\/3t(l—5t)
t=l1

if 2(x) 1s a “weak learner”.

2. No reasonable bounds
ex1st for generalization

3. Boosting takes simple and
interpretable models and
makes them impenetrable



h(x) 2 (x)-1
lo =—lo e
B ) gl;[ﬂt

=(1- 2V(X))Zlog P,

=> (log B)(1-2P,(Y =1| X))

t=1

Using the fact that
| IRCES -1
— — _ B, (Y=01x)
PY=1X)= T l+e
P(Y=1X)

we can rewrite the log-odds of the combined

classifiers as a function of the log-odds of
cach Py(°):

T o B T=IX) -1
=Y (log )| 1-2|1+e 70
t=1 .




Continued

T g A=) —1
=Y (log )| 1-2|1+e 70
t=1

1
(1+ex =l4lx—Lx +O(x5)j
A Taylor approximation yields a linear
combination of the log-odds from each

boosted naive Bayes classifier:

~ZT:(110 ) 1o AT =1%)
=SS b r=0l0)

Lastly, substitute the naive Bayes classifier

r P(Y=1 &I P(X |Y=1
> a, log ( )+ZZat log (4,1 )
P(r=0 =57 CRX,|7=0)

t=1

= boosted prior weight of evidence +

d
Z boosted weight of evidence from X,

J=1



Empirical results

Naive | AdaBoost | Weight of

Bayes evidence
Knee 14.0% 13.8% 13.4%
diagnosis | (5.0%) (5.5%) (5.7%)
Diabetes | 25.0% 24.4% 24.4%

(2.0%) (2.5%) (2.6%)
Credit 16.8% 15.5% 15.5%
approval | (2.0%) (2.1%) (2.1%)
Coronary | 18.4% 18.3% 18.3%
artery (3.0%) (3.2%) (3.3%)
disease
Breast 3.9% 3.8% 3.8%
tumors (1.0%) (1.0%) (1.0%)

Misclassification rates




Final Comments

Empirically evidence shows that in a
wide variety of problems and with
various base classifiers boosting

e decreases misclassification error,
e reduces variance in unstable classifiers,
e reduces bias

The naive Bayes classifier 1s
e robust,
e interpretable

Boosting weights of evidence combines
these two 1nto a competitive classifier.



Ongoing research...

Conjecture: Boosting turns non-
Bayes risk consistent classifiers into
Bayes risk consistent classifiers.

Regression: Project regression dataset
into a classification dataset on infinite
size. Use the boosted naive Bayes
classifier with the weight of evidence
approximation to obtain a flexible and
interpretable model.
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Y =infly: PO =1| X, y) >4
Y

Xla.”aXdaS)OC

P(Y = y)PS|Y =[] PX, 1Y =))

b .PS<y|Y*=1>>P<Y*=0)ﬁP<Xj|Y*=0>
y y.PS(y|Y*:0)_ P(Y =1) 54 P(Xj|Y*:1)
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